27 research outputs found

    Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder

    Get PDF
    Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) is a comprehensive, quantitative, and high throughput tool used to analyze metabolite profiles. In the present study, we used CE-TOFMS to profile metabolites found in the blood plasma of 33 medication-free patients with major depressive disorder (MDD) and 33 non-psychiatric control subjects. We then investigated changes which occurred in the metabolite levels during an 8-week treatment period. The medication-free MDD patients and control subjects showed significant differences in their mean levels of 33 metabolites, including kynurenine (KYN), glutamate (Glu), glutamine (Gln), methionine sulfoxide, and methionine (Met). In particular, the ratios of KYN to tryptophan (TRP), Gln to Glu, and Met to methionine sulfoxide were all significantly different between the two groups. Among the 33 metabolites with altered levels in MDD patients, the levels of KYN and Gln, as well as the ratio of Gln to Glu, were significantly normalized after treatment. Our findings suggest that imbalances in specific metabolite levels may be involved in the pathogenesis of MDD, and provide insight into the mechanisms by which antidepressant agents work in MDD patients

    Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder

    Get PDF
    Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) is a comprehensive, quantitative, and high throughput tool used to analyze metabolite profiles. In the present study, we used CE-TOFMS to profile metabolites found in the blood plasma of 33 medication-free patients with major depressive disorder (MDD) and 33 non-psychiatric control subjects. We then investigated changes which occurred in the metabolite levels during an 8-week treatment period. The medication-free MDD patients and control subjects showed significant differences in their mean levels of 33 metabolites, including kynurenine (KYN), glutamate (Glu), glutamine (Gln), methionine sulfoxide, and methionine (Met). In particular, the ratios of KYN to tryptophan (TRP), Gln to Glu, and Met to methionine sulfoxide were all significantly different between the two groups. Among the 33 metabolites with altered levels in MDD patients, the levels of KYN and Gln, as well as the ratio of Gln to Glu, were significantly normalized after treatment. Our findings suggest that imbalances in specific metabolite levels may be involved in the pathogenesis of MDD, and provide insight into the mechanisms by which antidepressant agents work in MDD patients

    The Study of Basic and Technological Development for Environmental Preservation using Photosynthetic Prokaryote

    Get PDF
    Technological development for environmental preservation is a subject of pressing need in the 21st century. The aim of this research is to develop a basic technology for environmental preservation using phototrophic prokaryotes

    Individual differences in the biomechanical effect of loudness and tempo on upper-limb movements during repetitive piano keystrokes. HumMov Sci. 2012; 31: 26–39. doi: 10.1016/j.humov.2011.01.002 PMID: 21816497

    No full text
    a b s t r a c t The present study addressed the effect of loudness and tempo on kinematics and muscular activities of the upper extremity during repetitive piano keystrokes. Eighteen pianists with professional music education struck two keys simultaneously and repetitively with a combination of four loudness levels and four tempi. The results demonstrated a significant interaction effect of loudness and tempo on peak angular velocity for the shoulder, elbow, wrist and finger joints, mean muscular activity for the corresponding flexors and extensors, and their co-activation level. The interaction effect indicated greater increases with tempo when eliciting louder tones for all joints and muscles except for the elbow velocity showing a greater decrease with tempo. Multiple-regression analysis and K-means clustering further revealed that 18 pianists were categorized into three clusters with different interaction effects on joint kinematics. These clusters were characterized by either an elbow-velocity decrease and a finger-velocity increase, a fingervelocity decrease with increases in shoulder and wrist velocities, or a large elbow-velocity decrease with a shoulder-velocity increase when increasing both loudness and tempo. Furthermore, the muscular load considerably differed across the clusters. These findings provide information to determine muscles with the 0167-9457/$ -see front matter

    A novel approach for evaluating the effects of odor stimulation on dynamic cardiorespiratory functions.

    No full text
    We aimed to develop a novel method to quantitatively evaluate the effects of odor stimulation on cardiorespiratory functions over time, and to examine the potential usefulness of clinical aromatherapy. Eighteen subjects participated. Nine people were assigned to each of the two resting protocols. Protocol 1: After resting for 2 min in a sitting position breathing room air, the subject inhaled either air or air containing sweet marjoram essential oil from the Douglas bag for 6 min, Protocol 2: After resting for 5 min in a supine position, the subject inhaled the essential oil for 10 min, and then recovered for 10 min breathing room air. All subjects inhaled the essential oil through a face mask attached to one-way valve, and beat-to-beat heart rate (HR) and arterial blood pressure (BP) as well as breath-by-breath respiratory variables were continuously recorded. In both protocols, during fragrance inhalation of the essential oil, time-dependent decrease in mean BP and HR were observed (P<0.05). During post-inhalation recovery, the significant fragrance-induced bradycardic effect lasted at least 5 min (- 3.1 ± 3.9% vs. pre-inhalation baseline value, p<0.05). The mean BP response at the start of odor stimulation was approximated by a first-order exponential model. However, such fragrance-induced changes were not observed in the respiratory variables. We established a novel approach to quantitatively and accurately evaluate the effects of quantitative odor stimulation on dynamic cardiorespiratory functions, and the duration of the effect. This methodological approach may be useful for scientific evaluation of aromatherapy as an approach to integrated medicine, and the mechanisms of action of physiological effects in fragrance compounds

    Effects of walking in water on gut hormone concentrations and appetite: comparison with walking on land

    No full text
    The effects of water exercise on gut hormone concentrations and appetite currently remain unclear. The aim of the present study was to investigate the effects of treadmill walking in water on gut hormone concentrations and appetite. Thirteen men (mean ± s.d. age: 21.6 ± 2.2 years, body mass index: 22.7 ± 2.8 kg/m2, peak oxygen uptake (VO2peak): 49.8 ± 7.8 mL/kg per min) participated in the walking in water and on land challenge. During the study period, ratings of subjective feelings of hunger, fullness, satiety and motivation to eat were reported on a 100-mm visual analog scale. A test meal was presented after walking, and energy intake (EI) was calculated. Blood samples were obtained during both trials to measure glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and acylated ghrelin (AG) concentrations. Hunger scores (How hungry do you feel?) were significantly lower during the water trial than during the land trial (P < 0.05). No significant differences were observed in EI between water and land trials. GLP-1 concentrations were significantly higher in the water trial than in the land trial (P < 0.05). No significant differences were observed in PYY concentrations between water and land trials. AG concentrations were significantly lower in the water trial than in the land trial (P < 0.01). In conclusion, changes in gut hormone concentrations during walking in water contribute to the exercise-induced suppression of appetite and provide novel information on the influence of walking in water on the acute regulation of appetite

    Periodic Breathing in Heart Failure Explained by Dynamic and Static Properties of Respiratory Control

    No full text
    Objective The respiratory operating point is determined by the interplay between the controller and plant subsystem elements within the respiratory chemoreflex feedback system. This study aimed to establish the methodological basis for quantitative analysis of the open-loop dynamic properties of the human respiratory control system and to apply the results to explore detailed mechanisms of the regulation of respiration and the possible mechanism of periodic breathing in chronic heart failure. Methods and Results In healthy volunteers, we measured arterial CO 2 partial pressure (Pa CO2 ) and minute ventilation (V̇ E ) to estimate the dynamic properties of the controller (Pa CO2 →V̇ E relation) and plant (V̇ E →Pa CO2 relation). The dynamic properties of the controller and plant approximated first- and second-order exponential models, respectively, and were described using parameters including gain, time constant, and lag time. We then used the open-loop transfer functions to simulate the closed-loop respiratory response to an exogenous disturbance, while manipulating the parameter values to deviate from normal values but within physiological ranges. By increasing both the product of gains of the two subsystem elements (total loop gain) and the lag time, the condition of system oscillation (onset of periodic breathing) was satisfied. Conclusion When abnormality occurs in a part of the respiratory chemoreflex system, instability of the control system is amplified and may result in the manifestation of respiratory abnormalities such as periodic breathing

    Summary for cardiorespiratory data obtained by averaging the five separate 5 min during experimental trials in protocol 2.

    No full text
    <p>Summary for cardiorespiratory data obtained by averaging the five separate 5 min during experimental trials in protocol 2.</p

    Cardiorespiratory variables to fragrance stimulation by inhaling sweet marjoram essential oil.

    No full text
    <p>Panel A: Time courses of cardiorespiratory variables to fragrance stimulation by inhaling sweet marjoram essential oil. Panel B: Absolute difference relative to baseline in each variable data for each of the three separate 2-min duration (0–2, 2–4 and 4–6 min). * P < 0.05 vs. the control condition.</p

    Cardiorespiratory variables during fragrance stimulation by inhalation sweet marjoram essential oil and post-inhalation recovery.

    No full text
    <p>Panel A: Time courses of mean BP, HR and VE to odor stimulation by inhaling sweet marjoram essential oil. Panel B: Percentage change from baseline in each variable data for each of the four separate 5-min duration (0–5, 5–10, 10–15 and15-20 min). * P < 0.05 and ** P < 0.01 vs. pre-inhalation baseline value.</p
    corecore